Abstract

Based on the reported experimental measurements on the output power in a transversely excited nitrogen laser with a weak corona preionization and rate equations, a simulation study was made to describe the laser output power behavior. For the study, we first made a literature survey for the appropriate E/p functional dependences of nitrogen molecules on drift velocity vd, and the Townsend ionization coefficient α, to be applied for the laser operational characteristics of high gas pressures up to 1 atmosphere, and 20 < E/p < 1000 V cm−1 Torr−1. For the study when the corona UV preionization is applied, it was realized that it is necessary to modify the Townsend ionization coefficient to include the effect of the preionization for the laser system. This realization revealed that the Townsend coefficient upon utilizing the corona effect, (α/p)corona, can be viewed as a perturbation to be added to the (α/p)main due to the main gas discharge, where the total (α/p)t = (α/p)main + (α/p)corona was used for the calculation. We also introduced a single α/p relation with A* and B* coefficients to explain the gas discharge due to both the main and corona discharges. The results of the two approaches are introduced and have been compared with each other. The present study indicates that laser optical measurements, by themselves, constitute a reliable approach for understanding the physical quantities that are involved during plasma formation in a gas discharge. Details of the approach will be presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call