Abstract

Most high Reynolds number flows of engineering interest are three-dimensional in nature. Key features of three-dimensional turbulent boundary layers (3DTBLs) include: non-colateral shear stress and strain rate vectors, and decreasing ratio of the shear stresses to the turbulent kinetic energy with increasing three-dimensionality. These are indicators that the skewing has a significant effect on the structure of turbulence. In order to further investigate the flow physics and turbulence structure of these complex flows, an innovative method for generating a planar shear-driven 3DTBL was developed. A specialized facility incorporating a relatively simple geometry and allowing for varying strengths of crossflow was constructed to facilitate studies where the skewing is decoupled from the confounding effects of streamwise pressure gradient and curvature. On-line planar particle image velocimetry (PIV) measurements and flow visualization results indicate that the experimental configuration generates the desired complex flow, which exhibits typical characteristics associated with 3DTBLs. Furthermore, spanwise shear results in modification of the near-wall turbulence structure. Analysis of near-wall flow visualization photographs revealed a reduction of mean streak length with increasing spanwise shear, while streak spacing remained relatively constant. In the most strongly sheared case, where the belt velocity is twice that of the freestream velocity, the mean streak length was reduced by approximately 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.