Abstract

This study aimed at estimating peat adsorption properties for copper ion removal from aqueous solutions during peat modification. Two peat modifications have been studied using batch tests and quantitatively reproduced with instrumental analysis by using spectrometric, potentiometric, and thermodynamic modeling methods. The first variation—mechanical activation—was carried out in a planetary mill; for the second one—mechanochemical activation—dry sodium percarbonate (Na2CO3·1.5H2O2) was added. The adsorption of copper ions was studied in the concentration range from 10–150 mg/L with an interaction time from 0.25–12 h. Both modifications led to significant changes in the interaction energy in the adsorption layer; thus, the acceptor properties of macromolecules were enhanced from natural peat to mechanically activated peat and mechanochemically activated peat. FTIR spectra, specific surface area characteristics, and sorption experiments show the predominantly chemical nature of copper sorption. Maximum adsorption capacity was determined to be 24.1, 42.1, and 16.0 mg/g for natural peat, mechanically activated peat, and mechanochemically activated peat, respectively. The example of peat mechanochemically oxidized with Na2CO3·1.5H2O2 shows that the improvement in the physicochemical properties (CBET and specific surface area) plays a smaller role in the sorption capacity in relation to copper ions than the presence of phenolic and carboxyl groups, the content of which decreases during oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.