Abstract
Xenon implantation into nanodiamonds is studied using molecular dynamics. The nanodiamonds range in size from 2 to 10 nm and the implantation energy extends up to 40 keV. For small nanodiamonds an energy-window effect occurs in which xenon energies of around 6 keV destroy the nanodiamond, while in larger nanodiamonds the radiation cascade is increasingly similar to those in bulk material. Destruction of the small nanodiamonds occurs due to thermal annealing associated with the small size of the particles and the absence of a heat-loss path. Simulations are also performed for a range of impact parameters, and for a series of double-nanodiamond systems in which a heat-loss path is present. The latter show that the thermal shock caused by the impact occurs on the timescale of a few picoseconds. These findings are relevant to ion-beam modification of nanoparticles by noble gases as well as astrophysics studies where implantation is proposed as the mechanism for xenon incorporation in pre-solar nanodiamonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.