Abstract
Bulk and surface changes in two proton-exchange membranes (Nafion-112 and Nafion-117) as a result of the incorporation of the IL-cationn-dodecyltriethylammonium (or DTA+) by a proton/cation exchange mechanism after immersion in a DTA+aqueous solution were analysed by impedance spectroscopy (IS), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and contact angle measurements performed with dry samples of the original Nafion and Nafion-DTA+-modified membranes. Only slight differences were obtained in the incorporation degree and surface chemical nature depending on the membrane thickness, and DTA+incorporation modified both the hydrophobic character of the original Nafion membranes and their thermal stability. Electrical characterization of the dry Nafion-112 membrane was performed by impedance spectroscopy while different HCl solutions were used for membrane potential measurements. A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.