Abstract

Post treatment with basic dyes, in concentrations that retard cell division, was found to influence the tnduction of mutations to prototrophy by UV light in a tyrosine-requirtng strain of E.Coli. Pyronin, which is unique among the dyes in tts selective affinity for RNA, was found to duplicate the effects of chloramphenicol or amino acfd deprtvatfon in causfng the rapid and irreversible loss of potential prototrophs (mutation frequency decline, or MFD). Acriflavtne, methyl green. crystal violet, methylene blue, and toluidine blue, all of which are known to combine with DNA, delay or retard the occurrence of MFD under conditions of amino acid deprivation. When acriflavine is removed from its combination with cellular components by the addition of an excess of sodium deoxyrtbonucleate, MFD begins promptly. The same basic dyes that delay MFD were also found to interfere with the fixation of mutations (MF) in an amino acid- enriched medium, and to cause marked enhancement of the mutagenic potency of low doses of UV light. While showing no independent mutagenic activity for unirradiated bacteria, all the dyes except pyronin increased the yield of induced mutations signtficantly when added to the enriched medium upon which trradiated bacteria were incubated.These results were interpreted asmore » evidence that UV light initiates mutagenesis by producing unstable changas directly in genic DNA. MFD is interpreted as a repair process, blocked by the machinery of RNA and protein synthesis and by the presence of certain basic dyes.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call