Abstract

A construction of multiple knot B-spline wavelets has been given in (C. K. Chui and E. Quak, Wavelet on a bounded interval, In: D. Braess and L. L. Schumaker, editors. Numerical methods of approximation theory. Basel: Birkhauser Verlag; (1992), pp. 57-76). In this work, we first modify these wavelets to solve the elliptic (partially) Dirichlet boundary value problems by Galerkin and Petrov Galerkin methods. We generalize this construction to two dimensional case by Tensor product space. In addition, the solution of the system discretized by Galerkin method with modified multiple knot B-spline wavelets is discussed. We also consider a nonlinear partial differential equation for unsteady flows in an open channel called Saint-Venant. Since the solving of this problem by some methods such as finite difference and finite element produce unsuitable approximations spe- cially in the ends of channel, it is solved by multiple knot B-spline wavelet method that yields a very well approximation. Finally, some numerical examples are given to support our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.