Abstract

AbstractThis study explores the plasma‐induced modification of microfibrillated cellulose (MFC) foams in a plane‐to‐plane atmospheric‐pressure dielectric barrier discharge with helium and hexamethyldisiloxane as carrier and precursor gases, with and without a gas gap. When the foam took up all of the gas gap, filamentary discharges were generated and burn‐like damage was produced. This resulted in highly inhomogeneous deposits having both hydrophilic and hydrophobic domains. MFC foams taking up only a portion of the gas gap volume generated a homogeneous discharge and induced cellulose defibrillation. They generated effective hydrophobic surfaces on both the top and bottom of the foams. Oleophilicity measurements were also carried out, which support the possibility of an effective separation of oily wastewater using a green and renewable material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call