Abstract

We have demonstrated that the d-spacing and thermal stability of the alkylimidazolium intercalated kaolinite compounds can be controlled by adjusting chain length of the alkyl groups. The composites were synthesized by displacement method using selected imidazolium ionic liquids bearing different short alkyl chains as guest molecules. The effects of the length of alkyl side chain on d-spacing and thermal stability of the ionic liquids–kaolinite intercalations were investigated by XRD and TG-DSC. Results revealed that in these composites, increasing the length of alkyl substituent led to larger d-spacing and decreased thermal stability. Temperature was found to have influence on the intercalation ratio but not on the d-spacing of final product. The present study shows an easy way of tailoring the performance of these intercalations via small variation of guest ionic liquids, providing the possibility of finding “species-specific” modifier for fully exfoliated nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call