Abstract

We study two dynamical systems submitted to white and Gaussian random noise acting multiplicatively. The first system is an imperfect pitchfork bifurcation with a noisy departure from onset. The second system is a pitchfork bifurcation in which the noise acts multiplicatively on the non-linear term of lowest order. In both cases noise suppresses some solutions that exist in the deterministic regime. Besides, for the first system, the imperfectness of the bifurcation reduces the regime of on-off intermittency. For the second system, the unstable mode can achieve a jump of finite amplitude at instability but without hysteresis. We finally identify a generic property that is verified by the stationary probability density function of the dynamical variable when a control parameter is varied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.