Abstract

Synaptic plasticity and neurogenesis in the brain are affected by environmental stimuli. The present study was designed to investigate the effects of social environments on learning and memory, neurogenesis, and neuroplasticity. Twenty-two-day-old rats were housed in isolation or in groups for 4 or 8 weeks and injected intraperitoneally with bromodeoxyuridine to detect proliferation among progenitor cells. The animals were also tested for learning in a water maze and for hippocampal CA1 long-term potentiation in vivo and in vitro. The results show that the number of newborn neurons in the dentate gyrus and the learning in a water maze decreased significantly in rats reared in isolation for 4 or 8 weeks, as compared with grouped controls. Induction of long-term potentiation in the CA1 area of rat hippocampus in vivo and in vitro was also significantly reduced by isolation. Furthermore, the effects of isolation rearing on spatial learning, hippocampal neurogenesis, and long-term potentiation could be reversed by subsequent group rearing. These findings demonstrated that social environments can modify neurogenesis and synaptic plasticity in adult hippocampal regions, which is associated with alterations in spatial learning and memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.