Abstract
We report multiple cases in which disruption of hsp70 regulatory regions by transposable element (TE) insertions underlies natural variation in expression of the stress-inducible molecular chaperone Hsp70 in Drosophila melanogaster. Three D. melanogaster populations from different continents are polymorphic for jockey or P element insertions in the promoter of the hsp70Ba gene. All three TE insertions are within the same 87-bp region of hsp70Ba promoter, and we suggest that the distinctive promoter architecture of hsp genes may make them vulnerable to TE insertions. Each of the TE insertions reduces Hsp70 levels, and RNase protection assays demonstrate that such insertions can reduce transcription of the hsp70Ba gene. In addition, the TEs alter two measures of organismal fitness, inducible thermotolerance and female reproductive success. Thus, transposition can create quantitative genetic variation in gene expression within populations, on which natural selection can act.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.