Abstract

Further development of modern technologies of diamond processing is connected with application in the diamond tool of powders with new unique properties, special morphology of grains, with the increased chemical and thermal stability. To increase the heat resistance of diamonds, they are covered with a metal (metallization) or glass-ceramic layer, or introduced into the reaction mixture used in the synthesis of diamonds, alloying additives of certain elements. Recently, other methods of coating to increase the heat resistance of diamonds have been developed, such as: vacuum ion-plasma sputtering, epitaxial synthesis, magnetron sputtering, the method of liquid-phase deposition. The latter method is promising for modifying the grain surface of grinding powders of superhard materials by heat-resistant inorganic non-metallic coatings, as it is the most economically advantageous.
 Determining the features of the technology of modification by the method of liquid-phase application of heat-resistant inorganic coatings (oxides and chlorides of metals and nonmetals) on the surface of grains of grinding powders of synthetic diamond brand AC6, used for grinding tools in mechanical engineering.
 Modification was performed by the isothermal method of liquid-phase application of saturated solutions of both heat-resistant oxides (В2О3, Al2O3), chlorides (СаСl2, NaCl, MgCl2, FeCl3), and their mixtures (В2О3+СаСl2, В2О3+NaCl). Based on the analysis of the results of the research, it can be stated that the application of coatings of inorganic substances (some oxides and chlorides) increases the heat resistance of synthetic diamond grinding powders. Modification allows to reduce expenses of diamonds in wheels at grinding.
 Conditions for modification of heat-resistant oxides and chlorides, as well as their mixtures, grain surface of synthetic diamond grinding powders are determined. Modification of the surface of diamond grains with a combination of B2O3+Al2O3 is guaranteed to double the wear resistance of diamond wheels. It is established that in all cases of modification the roughness of the parameter Ra decreases. It is determined that by changing the surface modifier of diamond grains it is possible to affect the bearing capacity of the rough surface obtained by grinding.
 The development of effective ways to increase the heat resistance of grinding powders made of superhard materials, primarily abrasive grinding powders made of synthetic diamond powders, helps to improve the quality of the grinding tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.