Abstract

A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (ΓFAD) was ca. 5.11×10−10molcm−2. The amperometric detection of iodate was performed in a 100mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78μAμM−1cm−2, a linear range of 4–140μM, and a limit of detection of 0.16μM for iodate. The interference effects of 250-fold Na+, Mg2+, Ca2+, Zn2+, Fe2+, Cl−, NO3−, I−, SO42− and SO32−, with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call