Abstract

Microplastics are an emerging pollutant of global concern, and fluorescence staining as an efficient method for small-sized microplastic qualification often undergoes the serious interference from external environments. The key steps affecting the accuracy of fluorescent staining and the corresponding quality assurance measures were rarely known. Therefore, this study took the Nile Red/DAPI co-staining method as an example to explore the key factors affecting its accuracy and effective measures to avoid interference. High background microplastic contamination in typical lab waters (up to 1115 MP/L), glass fiber filter membrane and glassware were identified as dominant factors affecting microplastic quantification. The background microplastics in lab waters mainly originated from the process of water production and storage. A simple filtration process removed 99% of the background microplastic in the lab waters. After burning at 500°C for 1h, the microplastic contamination in the filter membrane and glassware was completely eliminated. H2O2 pretreatment and exposure time caused erroneous microplastic size assessment, and were suggested to be set at 48h and 10ms, respectively. During the extraction process, the residue in beakers reached ~ 20% and > 50% for 5μm and 20μm sized microplastics, respectively, greatly contributing to the microplastic loss. The comprehensive modified measures caused microplastic concentrations in the three typical samples detected by Nile Red/DAPI co-staining method to decrease by 65.7 - 92.2% and to approach the micro-Raman results. This study clarified the reasons for interfering with quantitative microplastics by fluorescent staining and the effective measures to avoid interference, which were conducive to improving the accuracy of quantitative methods of microplastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.