Abstract

For understanding coal gasification reactions, primary pyrolysis reaction is important as the first stage of the gasification reactions. Recently, the authors developed a primary pyrolysis model to predict tar formation behavior by extending the chemical percolation devolatilization (CPD) model which is often used to predict pyrolysis behavior. The extended CPD (Ex-CPD) model predicts gas and tar components as respective chemical species. Consequently, the secondary tar decomposition behavior can be calculated by elementary step-like reaction models. However, some of the coal structure parameters used in the model contradict the 13C NMR data. That is, the molecular weight of the aromatic ring clusters calculated by the original Ex-CPD decreases with the aromatic index obtained by 13C NMR. In this study, this problem was resolved by modifying the calculation procedure to determine the coal structure parameters. The recalculated aromaticity index agreed with that calculated from the 13C NMR data. The modified Ex-CPD model was validated through comparison with coal gasification experiments using a pressurized drop tube furnace. The calculation results successfully described the trend of light gases, soot, and char yield in the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.