Abstract

The local production of stem cell factor (SCF) may be an important mechanism for regulating proliferation, differentiation, and migration of various cells bearing c-kit receptors, and might be susceptible to the cytokines that serve in inflammation and tissue repair. We have demonstrated that in three murine cell lines, Balb/3T3A31, MC3T3-E1, and C3H-2K, which constitutively produced SCF with different quantity, the SCF mRNA expression was greatly enhanced in response to basic fibroblast growth factor (bFGF) or transforming growth factor beta1 (TGF-beta1). The study was carried out by in situ hybridization utilizing nonradioactive oligonucleotide probes and quantitative image analysis. Leukemia inhibitory factor (LIF) or interleukin-4 (IL-4) moderately increased SCF mRNA in all cell lines, but IL-3 did not. The dot-blot enzyme-linked immunosorbent assay (ELISA) further confirmed that SCF protein production in these cell lines and bone marrow stromal cells was markedly enhanced by TGF-beta1, although TGF-beta1 suppressed the proliferation of all these cells. bFGF also enhanced the SCF production in these cell lines, but did not in bone marrow stromal cells, suggesting a difference in their susceptibility to the cytokine. Our results suggest that TGF-beta1 and bFGF potentially modulate the biological function of cells bearing c-kit receptors through the modulation of SCF production in fibroblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call