Abstract

In order to improve the acoustic attenuation performance of an exhaust muffler of a 175 series of agricultural diesel engine, automatic matched layer method of finite element is adopted on the basis of LMS Virtual.Lab software to simulate the non-reflecting boundary conditions, which can avoid the complex calculation and then figure out the value of propagated sound power directly and finally obtain the transmission loss of the exhaust muffler. Compared with the experimental data, it can be found that the error between the simulation and measured values is small, and it can be accurately simulated for the acoustic performance of the exhaust muffler at the frequencies smaller than 3000 Hz, which verifies the validity of the acoustic solution. An improved design that properly distributes the insertion length of intubation, increases the length–diameter ratio, and adds the length of the first expansion cavity is proposed for the poor acoustic attenuation performance in low and medium frequencies. Compared with the original design, the transmission loss value at low and medium frequencies obviously increases, so the acoustic attenuation performance at the frequencies becomes better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.