Abstract
During high-rate cycling of Li-ion batteries (LIBs) at elevated temperatures, the detachment of the cathode materials from their Al substrate is a major cause of the deterioration in the performance of LIBs. This detachment is suppressed by the addition of an electrolyte additive, poly(ethylene glycol) methyl ether methacrylate, which can act as a buffer zone to prevent the abrupt mass transport of electrolyte within the cathode and as a swing to transport Li+ ions dissociating from the active materials of the cathode. Owing to the dual effects of this type of monomer, an acrylate monomer with one side ether chain, the cathode materials are maintained without detachment from the Al substrate, even under severe cycling conditions. This idea can be applied to LIBs for a series of electric vehicles, which require superior high-rate performance at elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.