Abstract

Nanostructured materials are attracting increased interest and applications. Exciting perspectives may be offered by electrical insulation. Polymeric nanofilled materials may find new and/or upgraded applications in the electrical and electronic industry, replacing conventional insulation to provide improved performances in electrical apparatus, as regards, e.g., reliability, environmental compatibility and power rating. This paper shows that electrical properties of nanocomposite insulating materials for DC applications, specifically space charge, conductivity and breakdown voltage, can improve significantly with respect to the basis, unfilled materials. Reference is made to two polymeric materials, i.e. poly(ethylene-covinylacetate) (EVA) and polypropylene (PP), that are widely used as electrical insulation, e.g. for cables and capacitors. The nanofiller consists of an organophilic layered silicate, specifically an extra-pure synthetic fluorohectorite modified by means of interlayer exchange of sodium cations for protonated octadecylamine NH/sub 3//sup +/ (ODA), in a weight concentration of maximum 6%. In both materials the space charge accumulation rate as a function of applied electric field is significantly reduced, while the electrical conductivity is raised. The breakdown voltage can increase for the nanofilled materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call