Abstract

BackgroundElastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children. However, high complication rates (10-50%) are reported in complex fractures. This biomechanical study compares the stiffness with a 3rd nail implanted to that in the classical 2C-shaped configuration and presents the application into clinical practice.MethodsFor each of the 3 configurations of ESIN-osteosynthesis with titanium nails eight composite femoral grafts (Sawbones®) with an identical spiral fracture were used: 2C configuration (2C-shaped nails, 2 × 3.5 mm), 3CM configuration (3rd nail from medial) and 3CL configuration (3rd nail from lateral). Each group underwent biomechanical testing in 4-point bending, internal/external rotation and axial compression.Results2C and 3CM configurations showed no significant differences in this spiroid type fracture model. 3CL had a significantly higher stiffness during anterior-posterior bending, internal rotation and 9° compression than 2C, and was stiffer in the lateral-medial direction than 3CM. The 3CL was less stable during p-a bending and external rotation than both the others. As biomechanical testing showed a higher stability for the 3CL configuration in two (a-p corresponding to recurvation and 9° compression to shortening) of three directions associated with the most important clinical problems, we added a 3rd nail in ESIN-osteosynthesis for femoral fractures. 11 boys and 6 girls (2.5-15 years) were treated with modified ESIN of whom 12 were ‘3CL’; due to the individual character of the fractures 4 patients were treated with ‘3CM’ (third nail from medial) and as an exception 1 adolescent with 4 nails and one boy with plate osteosynthesis. No additional stabilizations or re-operations were necessary. All patients achieved full points in the Harris-Score at follow-up; no limb length discrepancy occurred.ConclusionThe 3CL configuration provided a significantly higher stiffness than 2C and 3CM configurations in this biomechanical model. These results were successfully transmitted into clinical practice. All children, treated by 3CL or 3CM according to the individual character of each fracture, needed no additional stabilization and had no Re-Do operations. As a consequence, at our hospital all children with femoral diaphyseal fractures with open physis are treated with this modified ESIN-technique.

Highlights

  • Elastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children

  • 3CL was less stable in the posterior-anterior and external rotation than 2C-shaped nails (2C) (Table 2) and 3CM (Table 3). 0° axial compression was not influenced by either modification

  • B: clinical results We intended to treat 18 children by these 3CM or 3CL modifications (Table 4), which was possible in 16 children (10 boys, 6 girls; aged 3 to 13 years). 12 configurations were ‘3CL’ (Figure 4a-c) and 4 ‘3CM’ (Figures 5 and 6) according to the individual character of the fracture

Read more

Summary

Introduction

Elastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children. High complication rates (10-50%) are reported in complex fractures This biomechanical study compares the stiffness with a 3rd nail implanted to that in the classical 2C-shaped configuration and presents the application into clinical practice. The guidelines of the German Society of Pediatric Surgery recommend elastic stable intramedullary nailing (ESIN) for displaced fractures even in complex or spiral fractures for children older than 2- to 3-years-of-age [1]. This is based upon reported rapid recovery, fast reintegration of the patients, a reduction of the possible negative effects of immobilization and few to no complications. Shortening, recurvation and varus seem to be the most important clinical problems associated with ESIN in femoral fractures

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call