Abstract

The modification of cloud condensation nucleus (CCN) activity of saturated organic particles resulting from heterogeneous oxidation by OH radicals was studied. Submicron Bis-2-ethylhexyl sebacate (BES) and stearic acid particles were exposed to OH radicals in a reactor flow tube and CCN activity was monitored. The hygroscopicity parameter, κ, for monodisperse stearic acid and BES particles of 145–150 nm in size increased from <0.008 up to 0.08 as a result of OH exposures equivalent to atmospheric exposure timescales of several days to a week. The oxidation of stearic acid particles led to a 50% reduction in particle volume at high OH exposures, indicating an enhanced degree of volatilization of oxidation products compared to oxidized BES particles, along with possible shape/phase change. Surface tension measurements of water extracts of oxidized BES films showed a significant reduction in surface tension due to oxidation. Köhler calculations modeling the CCN measurements suggest that the surface active oxidation products play an important role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.