Abstract

A Fokker-Planck model for the interaction of fast ions with the thermal electrons in a quasineutral plasma is developed. When the fast ion population has a net flux (i.e., the distribution of fast ions is anisotropic in velocity space), the electron distribution function is perturbed from Maxwellian by collisions with the fast ions, even if the fast ion density is orders of magnitude smaller than the electron density. The Fokker-Planck model is used to derive classical electron transport equations (a generalized Ohm's law and a heat flow equation) that include the effects of the electron-fast ion collisions. It is found that these collisions result in a collisionally induced current term in the transport equations which can be significant. The new transport equations are analyzed in the context of a number of scenarios including α particle heating in inertial confinement fusion and magnetoinertial fusion plasmas as well as ion beam heating of dense plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call