Abstract

Maltose syrups have got wide-range utilizations in a variety of applications from bakery to drug-development. α-Amylases are among the most widely utilized industrial enzymes due to their high specificity in production of maltose syrup from starch. However, enzymes are not stable in ex vivo conditions towards alteration in pH, temperature, and such other parameters as high salt concentrations and impurities, where immobilization is required to advance the stability of the enzyme with which approach the requirement of isolation of the enzyme from media is eliminated as well. In this study, Termamyl® α-amylase was immobilized on the none-modified chitosan beads (NMCB), L-lysine-modified chitosan beads (LMCB), and L-asparagine-modified chitosan beads (AMCB) to assess effects of the support material on optimum conditions and kinetic parameters of the α-amylase activity in production of maltose from starch. Immobilization on NMCB, LMCB, and AMCB puts a strong influence on optimum pH, optimum temperature, stability, and kinetic parameters of α-amylase. Modification of chitosan beads with L-lysine and L-asparagine dramatically altered the overall immobilization yield, and enzyme's response to pH and temperature variations and the kinetic parameters. AMCB provided the best immobilization yield (49%), while LMCB only improved the yield by 2% from 22 to 24%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.