Abstract

SummaryChitosan was modified using H2O2 and ascorbic acid with different incubation temperatures (4–40 °C). The properties of modified chitosan, including its oil entrapment ability, water solubility and the lipase‐resistant activities, using in vitro intestine model system were determined. Nuclear magnetic resonance analysis showed that ascorbic acid was bound to modified chitosan. All of the modified chitosan from 4 to 40 °C demonstrated improved water solubility (even in pH 7) compared to non‐modified chitosan, which was only soluble at pH 4. Modified chitosan from 4 °C exhibited 27.40% of oil entrapment ability which was approximately four times higher than 6.87% of non‐modified chitosan. Modified chitosan from 4 and 40 °C had increased resistance against lipase activity compared to other biopolymers, including beeswax, carnauba wax and non‐modified chitosan. Modified chitosan could be used as a new food ingredient due to their high water solubility, oil‐entrapping ability and resisting lipase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.