Abstract

Cellulose is a most abundant natural biopolymer, however, the strong hydrogen bonding system makes cellulose hard to dissolve, limiting its further applications. In this study, an innovative cold plasma (CP) technology was used to modify cellulose from sugarcane (Saccharum officinarum) bagasse pulp. Dissolution, structure, and surface chemistry of cellulose before and after CP treatment were investigated. Results showed that the dissolution rate of cellulose after different CP treatment time (3–12 min) and operating voltage (40–70 kV) was significantly improved. Roughness, even holes (CP treatment 9 min with 50 kV) and breakage (CP treatment 9 min with 70 kV) were observed on the surface. The crystallinity index decreased from 62.31% (control) to 60.88% (CP treatment 3 min with 50 kV). The hydrogen bonding force was weakened and the peak intensity of CO and CO stretching vibration groups were enhanced. Therefore, CP-modified cellulose may be applied more in future, such as biological films for food future packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call