Abstract
The electrode, where electrochemical reactions are taken place, plays a vital role in the overall performance of vanadium flow batteries (VFBs). In this paper, a composite of manganese oxide and amorphous carbon was first synthesized from metal-organic frameworks and used as a catalyst to promote the electrochemical behavior of electrodes. The newly proposed catalyst was fabricated by a carbonization process of Mn-based metal-organic framework obtained by hydrothermal method. The morphology, composition, electrochemical activity and cell performance are respectively studied. The results show that: i) the catalyst carbonized at 900 °C possesses a smaller size, larger specific surface area, more oxygen-containing functional group and realizes superior electrochemical activity; ii) it helps the vanadium flow battery to increase its energy efficiency by 6% at 100 mA cm−2; iii) it is also beneficial to the working voltage, discharge capacity, high current density property and cycling performance of VFBs. Thus, this work can not only provide a new type of electrochemical catalyst for vanadium flow batteries, but also be significant to the improvement of the overall performance and conducive to the widespread application of vanadium flow batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.