Abstract

A kinetic study is reported for reactions of 4-nitrophenyl benzoate (1c) and O-4-nitrophenyl X-substituted thionobenzoates (2a-e) with a series of pyridines in 80 mol % H2O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 +/- 0.1 degrees C. O-4-Nitrophenyl thionobenzoate (2c) is more reactive than its oxygen analogue 1c toward all the pyridines studied. The Brønsted-type plot is linear with beta(nuc)=1.06 for reactions of 1c but curved for the corresponding reactions of 2c with beta(nu)c decreasing from 1.38 to 0.38 as the pyridine basicity increases, indicating that the reaction mechanism is also influenced on changing the electrophilic center from C=O to C=S. The curvature center of the curved Brønsted-type plots (defined as pK(a)(o)) occurs at pKa = 9.3 regardless of the electronic nature of the substituent X in the nonleaving group. The Hammett plot for reactions of 2a-e with 4-aminopyridine is nonlinear, i.e., the substrates having an electron-donating substituent exhibit negative deviations from the Hammett plot. However, the Yukawa-Tsuno plot for the same reactions exhibits good linear correlation, indicating that the negative deviations shown by these substrates arise from stabilization of the ground state through resonance interaction between the electron-donating substituent X and the C=S bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.