Abstract

It was shown recently that bacterial strains, which can act specifically against malignant cells, can be used efficiently in cancer therapy. Many appropriate bacterial strains are either pathogenic or invasive and there is a substantial shortage of methods with which to monitor in vivo the distribution of bacteria used in this way. Here, it is proposed to use a Layer-by-Layer (LbL) approach that can encapsulate individual bacterial cells with fluorescently labeled polyelectrolytes (PE)s and magnetite nanoparticles (NP)s. The NP enable remote direction in vivo to the site in question and the labeled shells in the far-red emission spectra allow non-invasive monitoring of the distribution of bacteria in the body. The magnetic entrapment of the modified bacteria causes the local concentration of the bacteria to increase by a factor of at least 5. The PEs create a strong barrier, and it has been shown in vitro experiments that the division time of bacterial cells coated in this way can be regulated, resulting in control of their invasion into tissues. That animals used in the study survived and did not suffer septic shock, which can be attributed to PE capsules that prevent release of endotoxins from bacterial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.