Abstract

Axial fans often show adverse flow conditions at the fan hub and at the tip of the blade. The modification of conventional axial fan blade is presented. Hollow blade was manufactured from the hub to the tip. It enables the formation of self-induced internal flow through internal passages. The internal flow enters the passage of the hollow blade through the opening near the fan hub and exits through the trailing edge slots at the tip of the hollow blade. The study of the influence of internal flow on the flow field of axial fan and modifications of axial fan aerodynamic characteristics is presented. The characteristics of the axial fan with the internal flow were compared to characteristics of a geometrically equivalent fan without internal flow. The results show integral measurements of performance testing using standardized test rig and the measurements of local characteristics. The measurements of local characteristics were performed with a hot-wire anemometry and a five-hole probe. Reduction in adverse flow conditions near the trailing edge at the tip of the hollow blade, boundary-layer reduction in the hollow blade suction side, and reduction in flow separation were attained. The introduction of the self-induced blowing led to the preservation of external flow direction defined by the blade geometry, which enabled maximal local energy conversion. The integral characteristic reached a higher degree of efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.