Abstract

A new and original method, based on a non-aqueous sol–gel process, has been successfully established to produce quasi-spherical monodispersed TiO2 nanoparticles (NPs) and also noble metals (NM) @TiO2 heterostructures (NM=Au, Pt, Ag, 2wt%), in one-pot and at low temperature. This has been achieved by using titanium oxyacetylacetonate as new single source precursors. This system has been deeply investigated by advanced characterization techniques. By using NMR, we have demonstrated the relatively complex mechanism behind this apparently simple synthesis, mediated by the reaction of the solvent and generated species, with many separate organic and organometallic molecules identified as being involved in the mechanism. The morphology and structure of the NM@TiO2 heterostructures were investigated by advanced scanning transmission electron microscopy while the chemical state of the noble metal nanoparticles was check by X-ray photoelectron spectroscopy (XPS). Undoped and noble metal (Au, Pt, Ag) decorated quasi/spherical TiO2 nanoparticles worked also as sensing interfaces, leading to the development of a highly sensitive conductometric NO gas sensor under both dark and UV–vis light irradiation, in the first result of its kind. Furthermore, the photocatalytic activity (PCA) was also evaluated, in the gas–solid phase, by monitoring the degradation of NOx under solar-light irradiation. Au-modified TiO2 showed improved photocatalytic efficiencies, compared to unmodified TiO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.