Abstract
Pushing and pulling tasks using carts and material handling devices have become more prevalent in occupational environments in an attempt to reduce the musculoskeletal risks associated with lifting. However, little change in low back disorder rates have been noted as tasks change from lifting to pushing and pulling indicating that we do not understand the mechanics of pushing and pulling well. Biomechanical assessments of pushing and pulling tasks using person-specific biologically assisted models offer a means to help understand how the spine is loaded under pushing and pulling conditions. However, critical components of these models must be adjusted so that they are sensitive to the different physiologic responses in the torso muscles expected during pushing and pulling compared to lifting tasks. The objective of this study was to modify an electromyography (EMG)-assisted biomechanical model designed to evaluate lifting tasks so that it can better represent the biomechanical forces expected during pushing and pulling tasks. Several key modifications were made. Based upon a literature review, changes in muscle cross-sectional area and muscle origins and insertions were made to better represent the geometry of the torso muscles. It was also necessary to adjust the length–force and velocity–force muscle relationships. Empirically derived length–force and velocity–force relationships were developed to independently represent the flexor and extensor musculature. These modifications were then systematically incorporated into the model. The model was exercised over several pushing and pulling conditions to assess the effect of these modifications on its ability to predict externally measured spinal moments. Results indicated that the alterations made to the preexisting EMG-assisted model resulted in acceptable model performance for pushing, pulling, and lifting activities. Relevance to industry The use of carts and material handling devices has become increasingly prevalent in industry, though little research has been done to examine the body's response. The modifications made to the biomechanical model would enable its use in the evaluation and design of material handling devices and pushing and pulling tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.