Abstract

The flavoenzyme pig kidney general acyl-CoA dehydrogenase (EC 1.3.99.3) is inactivated by cyclohexane-1,2-dione in borate buffer in a reaction that exhibits pseudo-first-order kinetics. Strong protection is afforded by the substrate octanoyl-CoA, as well as by heptadecyl-CoA, a potent competitive inhibitor of the dehydrogenase that does not reduce enzyme flavin. Enzyme exhibiting 10% residual activity in borate buffer contains about 1.3 modified arginine residues per flavin molecule. Very little reduction of the modified enzyme in borate buffer occurs at high concentrations of octanoyl-CoA, in marked contrast with the stoicheiometric reduction of the native enzyme. However, in phosphate buffer alone, the modified enzyme exhibits 55% residual activity and, although binding of substrate is still seriously impaired (apparent Kd=14 microM), excess substrate effects the formation of the characteristic reduced flavin X enoyl-CoA charge-transfer complex. These results suggest that the susceptible arginine residue, though not catalytically essential, is probably within the acyl-CoA-binding site of general acyl-CoA dehydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call