Abstract

A molecule of the major blood protein albumin contains 34 cysteine residues involved in disulfide bonds and one unpaired SH-group of residue Cys34. Normally, 20–30% of these SH-groups are oxidized and form disulfide bonds or the derivatives of sulfenic, sulfinic, and sulfonic acids. The goal of the present work was to study the influence of the degree of oxidation of sulfhydryl groups on the capacity of albumin for glycation. Commercially available human albumin containing 0.4 moles of sulfhydryl groups per 1 mole of the protein (nonmercaptalbumin) was used. Disulfide bonds in this preparation were reduced with dithiothreitol to 0.7 mole/mole to give mercaptalbumin. The preparations were incubated for three weeks with glucose at a concentration of 5 and 50 mM. The content of ketoamine, a glycation product, was determined by the colorimetric method, the content of pentosidine (glycation end product) was analyzed by fluorescence, and the content of SH-groups was determined using the Ellman’s reagent. Changes in the structure and properties of the protein during glycation were studied by fluorescence and HPLC. During the incubation of both albumin preparations with 5 mM glucose, no significant increase in the ketoamine content was observed, whereas the incubation with 50 mM glucose was accompanied by a considerable accumulation of ketoamine. It was found that the greatest amount of ketoamine under these conditions forms in nonmercaptalbumin; in this case, the intensity of tryptophan fluorescence decreases. The intensity of pentosidine fluorescence increases with increasing content of ketoamine. The results obtained enable the conclusion that the oxidation of free SH-groups of the protein changes its conformation; as a result, the glycation of earlier hidden sites becomes possible, and the degree of protein glycation increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.