Abstract

Interest in the study of mesoscopic structures has grown significantly in recent years. This is primarily due to the development of semiconductor technology, which makes it possible to create structures with sizes of the order of units and tens of nanometers. The linear dimensions of such structures are inferior to the de Broglie wavelength of electrons, so the transport of electrons is determined mainly by their wave properties, which, in turn, leads to a number of new effects.
 Mesoscopic structures include the resonant tunnel diode (RTD), first proposed by Esaki and Tsu, and which is one of the first nanoelectronic devices. It consists of a semiconductor layer with a fairly narrow band gap, a quantum well (QW) layer located between two semiconductor layers (barriers) with a wider band gap. These layers, in turn, are located between the layers (spacers) of weakly doped narrow semiconductor, followed by highly doped layers of the emitter and collector. There are one or more energy levels of dimensional quantization in the QW. Under the action of bias voltage, the current passes through the RTD only if the emitter contains electrons that can tunnel. Resonant tunneling occurs at the energy level in the QW, and from there to the collector, where the spectrum of energy states is band. RTD has a very high speed of action, for example, it is known that the nonlinear properties of RTD persist up to 104 THz. The RTD is also of great power: it is the only device of nanoelectronics that can be used at room temperatures, and on the VAC of the RTD the areas of negative differential conductivity (NDC) are observed.
 In this article, the principle of a resonant tunneling diode is revealed, and the phenomena of tunneling in nanophysics are examined in detail. The volt-ampere characteristic (VAC) model of a two-barrier resonance tunnel diode is calculated. The paper investigates how the change of transparency coefficients and the reflection of the potential barrier of a rectangular shape affect the VAC of the RTD. This study can be the basis for further consideration of how the modification of the active region of the resonant tunnel diode affects its characteristics. In addition, the results of the research allow us to estimate qualitatively the energy required by electrons for tunneling through the structure of the RTD.

Highlights

  • Явище резонансного тунелювання було вперше описано в 1958 р. японським дослідником Л.

  • Принцип дії резонансно тунельного діоду полягає у тому, що струм досягає максимального значення, коли при поданій напрузі енергія електронів дорівнює енергії дискретного рівня у квантово-обмеженій області.

  • При більш високих або менших напругах енергія електронів стає більшою чи меншою ніж енергія дискретного рівня, і прозорість бар'єру для електронів зменшиться.

Read more

Summary

Introduction

Явище резонансного тунелювання було вперше описано в 1958 р. японським дослідником Л. Принцип дії резонансно тунельного діоду полягає у тому, що струм досягає максимального значення, коли при поданій напрузі енергія електронів дорівнює енергії дискретного рівня у квантово-обмеженій області. При більш високих або менших напругах енергія електронів стає більшою чи меншою ніж енергія дискретного рівня, і прозорість бар'єру для електронів зменшиться.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.