Abstract

Activated carbon is commonly used to remove dioxins from flue gas via adsorption. Improving the targeted adsorption capacity of activated carbon for dioxins can reduce the consumption of adsorbents and help achieve emission standards for target pollutants. Here, commercial coal-based activated carbon was used as a raw material and modified by urea impregnation along with treatment at high temperature under a nitrogen atmosphere. It was found that modification with urea effectively improved the pore structure of activated carbon while incorporating a certain amount of nitrogen. The best modification effect was achieved at a modification temperature of 600°C, an impregnation ratio of urea to activated carbon of 1:1, and with high-temperature treatment for 2h. The mesopore volume of the modified activated carbon (AC600) reached 0.38cm3/g, accounting for 57.58% of the total pore volume. With an impregnation ratio of urea to activated carbon of 1:1, high-temperature treatment for 2h, and a modification temperature of 800°C, a certain amount of nitrogen was introduced into the carbon rings to form a modified activated carbon (AC800) rich in pyridine and pyrrole groups (atomic percentage=4.84%). The activated carbon modified by urea and the unmodified activated carbon were subsequently selected for dioxin adsorption experiments using a dioxin generation and adsorption system. AC600 showed the highest adsorption efficiency for dioxins, reaching 97.65%, based on toxicity equivalents. Although AC800 has poor pore properties, it has more pyridine and pyrrole groups than AC600. Consequently, the efficiency of AC800 at adsorbing low-concentration dioxins reached 85.24% based on toxicity equivalents. Overall, this study describes two mechanisms for effectively modifying activated carbon with urea based on (1) optimizing the pore structure of activated carbon and (2) incorporating nitrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.