Abstract

For solving large systems of nonlinear equations by quasi-Newton methods it may often be preferable to store an approximation to the Jacobian rather than an approximation to the inverse Jacobian. The main reason is that when the Jacobian is sparse and the locations of the zeroes are known, the updating procedure can be made more efficient for the approximate Jacobian than for the approximate inverse Jacobian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.