Abstract

In this paper, a simpler approach compared to the existing approaches is developed to analyze nuclear reactor dynamics based on the explicit Monte Carlo method. A new population control method is also introduced to prevent neutron population growth and consequent computer memory shortages, which also increases simulation speed. The scheme is applied for time-dependent particle tracking in three-dimensional arbitrary geometries in the presence of feedbacks through a code named MCSP-Explicit. Changes in material density, as well as geometry dimensions, are also considered during simulation. MCSP-Explicit can be run with either continuous or multigroup data libraries, and it is further boosted by parallel processing to speed up simulations. A number of benchmark problems are studied at the end to evaluate the performance of the proposed approach in various situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.