Abstract
BackgroundEpidemiological studies suggest that both ambient ozone (O3) and temperature were associated with increased risks of adverse birth outcomes. However, very few studies explored their interaction effects, especially for small for gestational age (SGA) and large for gestational age (LGA). ObjectivesTo estimate the modification effects of ambient temperature on associations of ambient O3 exposure before and during pregnancy with preterm birth (PTB), low birth weight (LBW), SGA and LGA based on multicity birth cohorts. MethodsA total of 56,905 singleton pregnant women from three birth cohorts conducted in Tianjin, Beijing and Maoming, China, were included in the study. Maximum daily 8-h average O3 concentrations of each pregnant woman from the preconception period to delivery for every day were estimated by matching their home addresses with the Tracking Air Pollution in China (TAP) datasets. We first applied the Cox proportional-hazards regression model to evaluate the city-specific effects of O3 exposure before and during pregnancy on adverse birth outcomes at different temperature levels with adjustment for potential confounders, and then a meta-analysis across three birth cohorts was conducted to calculate the pooled associations. ResultsIn pooled analysis, significant modification effects of ambient temperature on associations of ambient O3 with PTB, LBW and LGA were observed (Pinteraction < 0.05). For a 10 μg/m3 increase in ambient O3 exposure at high temperature level (> 75th percentile), the risk of LBW increased by 28 % (HR: 1.28, 95% CI: 1.13–1.46) during the second trimester and the risk of LGA increased by 116% (HR: 2.16, 95%CI: 1.16–4.00) during the entire pregnancy, while the null or weaker association was observed at corresponding low (≤ 25th percentile) and medium (> 25th and ≤ 75th percentile) temperature levels. ConclusionThis multicity study added new evidence that ambient high temperature may enhance the potential effects of ambient O3 on adverse birth outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.