Abstract

Administration of p-chlorophenoxyisobutyric acid (clofibric acid) to rats induced a marked change in acyl composition of hepatic glycerolipids; a considerable increase in the proportion of octadecenoic acid (18:1) was accompanied by a marked decrease in the proportion of octadecadienoic acid (18:2). Among the glycerolipids, the changes in the proportions of 18:1 and 18:2 were the most marked in phosphatidylcholine. The change in the acyl composition of phosphatidylcholine paralleled the change in free fatty acid composition in microsomes. The treatment of rats with clofibric acid resulted in a 2.3-fold increase in activity of microsomal palmitoyl-CoA chain elongation and a 4.8-fold increase in activity of stearoyl-CoA desaturation. The activities of acyl-CoA synthetase, 1-acylglycerophosphate acyltransferase and 1-acylgly-cerophosphorylcholine acyltransferase in hepatic microsomes were increased approx. 3-, 1.7- and 3.6-times, respectively, by the treatment of rats with clofibric acid. These findings are discussed with respect to the role of fatty acid modification systems in the regulation of acyl composition of phosphatidylcholine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call