Abstract

To investigate the dynamic thermal resistance of woven fabrics in different wetting states, ten commonly used clothing fabrics were selected and tested for fabric thermal resistance under different levels of water saturation in accordance with Chinese national standards. Based on Mangat’s eight thermal resistance prediction models, the study improved the models by replacing the original moisture content with water content saturation. The suitability of the eight models in predicting the thermal resistance of woven fabrics in wet states was compared using the sum of squared deviations (SSD), sum of absolute deviations (SAD), and correlation coefficient (R2). The results showed that during the process from initial wetting to complete immersion, the measured thermal resistance values of the ten fabric samples were consistent with the predicted values from Model 5 in the theoretical model of thermal resistance (R2 > 0.955). The characteristic of Model 5 is that the air thermal resistance and water thermal resistance are first connected in parallel and then connected in series with the fiber thermal resistance. The corrected predicted values from Model 5 were highly consistent with the experimental measurement values and can be used to approximate the thermal resistance of woven fabrics in wet states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call