Abstract

The exopolysaccharide (EPS) from the mycelial fermentation of a medicinal fungus Cordyceps sinensis Cs-HK1 had shown significant anti-inflammatory activity previously, and EPS-LM was a highly active fraction with a relatively low molecular weight (MW) isolated from the Cs-HK1 EPS. This study was to assess the effects of Bifidobacterial fermentation in anaerobic conditions on the molecular properties and anti-inflammatory activity of EPS-LM. In both Bifidobacterial cultures (B. breve and B. longum), EPS-LM was fractionally consumed as a carbon source, increasing the bacterial growth and acetic acid production. Analytical results from the fermentation digesta (supernatant) suggested that EPS-LM was partially degraded to lower molecular weight (MW) products with modified structures during the Bifidobacterial fermentation. More interestingly, the higher MW digesta fraction containing the partially degraded EPS-LM showed even stronger inhibiting activity than the original EPS-LM on the LPS-induced pro-inflammatory responses in THP-1 cell culture, including NF-κB activation, release of NO, TNF-α and IL-8. The study has shown that the fermentation by selected Bifidobacterial strains is effective to modify natural polysaccharides with enhanced bioactivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.