Abstract
We describe the spontaneous emission properties of an M-type five-level atom embedded in a photonic crystal (PC), which is coherently driven by two external laser fields. It leads to two types of quantum interference: reservoir-induced interference and laser-induced interference. Considering different detunings of atomic transition frequencies from band edges, we reveal some interesting phenomena such as spectral-line enhancement, spectral-line suppression, spectral-line narrowing, reservoir-induced cancellation of spontaneous emission and the appearance of dark lines, which originate from the quantum interference effects and the control of external laser fields. These investigations suggest possible applications in quantum optics, optical communications and in the fabrication of novel optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.