Abstract

Accurate estimates of genome sizes are important parameters for both theoretical and practical biodiversity genomics. Here we present a fast, easy-to-implement and accurate method to estimate genome size from the number of bases sequenced and the mean sequencing depth. To estimate the latter, we take advantage of the fact that an accurate estimation of the Poisson distribution parameter lambda is possible from truncated data, restricted to the part of the sequencing depth distribution representing the true underlying distribution. With simulations we show that reasonable genome size estimates can be gained even from low-coverage (10×), highly discontinuous genome drafts. Comparison of estimates from a wide range of taxa and sequencing strategies with flow cytometry estimates of the same individuals showed a very good fit and suggested that both methods yield comparable, interchangeable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.