Abstract

We report in this paper different modes of Na and K transport in human red cells, which can be inhibited by furosemide in the presence of ouabain. Experimental evidence is provided for inward and outward coupled transport of Na and K, Ki/Ko and Nai/Nao exchange, and uncoupled Na or K efflux. The outward cotransport of Na and K was defined as the furosemide-sensitive (FS) component of Na and K effluxes into choline medium and as the Cl-dependent or cis-stimulated component of the ouabain-resistant (OR) Na and K effluxes. Inward cotransport of Na and K was defined by the stimulation by external Na (Nao) of the K influx and the stimulation by external K (Ko) of the Na influx in the presence of ouabain. Both effects were FS and Cl dependent. Experimental evidence for an FS Ki/Ko exchange pathway of the Na/K cotransport was provided by (a) the stimulation by external K of FS K influx and efflux, and (b) the stimulation by internal Na or K of FS K influx in the absence of external Na. Evidence for an FS Nai/Nao exchange pathway was provided by the stimulation of FS Na influx by internal Na from a K-free medium (130 mM NaCl). This pathway was four to six times smaller than the Ki/Ko exchange. In cells containing only Na or K, incubated in media containing only Na or K, respectively, there was FS efflux of the cation without simultaneous inward transport (FS uncoupled Na and K efflux). The stoichiometric ratio of FS outward cotransport of Na and K into choline medium varied with the ratio of Nai-to-Ki concentrations, and when Nai/Ki was close to 1, the ratio of FS outward Na to K flux was also 1. In choline media, FS Na efflux was inhibited by external K (noncompetitively), whereas FS k efflux was stimulated. The stimulation of FS K efflux was due to the stimulation by Ko of the Ki/Ko exchange pathway. Thus, the stoichiometry of FS Na and K effluxes also varied in the presence of external K. A minimal model for a reaction scheme of FS Na and K transport accounts for cis stimulation, trans inhibition, and trans stimulation, and for variable stoichiometry of the FS cation fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.