Abstract

Single droplet fragmentation of different liquids is essential for the fundamental understanding and augmenting of the atomization process involved in several industrial processes. Most importantly, there is a need to increase our understanding of the atomization of biofuels in combustion devices such as gas turbines and internal combustion engines. In this work, we describe and compare the laser-induced fragmentation of ethanol, Rapeseed Methyl Ester (RME), and their emulsions. We use a nanosecond laser pulse of various laser energies to fragment droplets. Acoustic levitation is used for non-contact manipulation of an isolated single droplet, and the fragmentation sequences are recorded using two high-speed cameras. Three breakup modes are observed: Droplet rupture and air entrapment, sheet breakup, and prompt/catastrophic fragmentation. At lower laser energy, air entrapment inside the droplet occurs. Sheet breakup and catastrophic breakup are observed for droplets of RME emulsions. The ligament-mediated atomization via Rayleigh-Plateau instability and the resulting secondary droplets are studied in detail. The breakup of RME-Ethanol emulsions results in the formation of small secondary droplets compared to pure liquid droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call