Abstract

Perhaps no other topic in risk analysis is more difficult, more controversial, or more important to risk management policy analysts and decision-makers than how to draw valid, correctly qualified causal conclusions from observational data. Statistical methods can readily quantify associations between observed variables using measures such as relative risk (RR) ratios, odds ratios (OR), slope coefficients for exposure or treatment variables in regression models, and quantities derived from these measures. Textbooks of epidemiology explain how to calculate population attributable fractions, attributable risks, burden-of-disease estimates, and probabilities of causation from relative risk (RR) ratios. Despite their suggestive names, these association-based measures have no necessary connection to causation if the associations on which they are based arise from bias, confounding, p-hacking, coincident historical trends, or other noncausal sources. But policy analysts and decision makers need something more: trustworthy predictions – and, later, evaluations – of the changes in outcomes caused by changes in policy variables. This concept of manipulative causation differs from the more familiar concepts of associational and attributive causation most widely used in epidemiology. Drawing on modern literature on causal discovery and inference principles and algorithms for drawing limited but useful causal conclusions from observational data, we propose seven criteria for assessing consistency of data with a manipulative causal exposure–response relationship – mutual information, directed dependence, internal and external consistency, coherent causal explanation of biological plausibility, causal mediation confirmation, and refutation of non-causal explanations – and discuss to what extent it is now possible to automate discovery of manipulative causal dependencies and quantification of causal effects from observational data. We compare our proposed principles for causal discovery and inference to the traditional Bradford Hill considerations from 1965. Understanding how old and new principles are related can clarify and enrich both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.