Abstract

As a result of implemented modernization of known electrode composite material based on Cu-3% wt BN copper powder successfully used for electrical discharge machining of high-strength alloys, composite material (Cu - 3% wt BN) – 0.5 % wt Al – 0.25 % wt in the form of high-density long thin-wall plates for operations of electrical discharge cutting and piercing of hard-to-machine materials was obtained. The new material was obtained with the use of the method of reactionary mechanical alloying of initial powder components in the attritor. Tool electrodes made of the new material during electrical discharge piercing of rectangular holes in titanium alloy sheets ensure a 1.6 times higher machining rate comparing to tool electrodes made of the Cu-3% wt BN prototype material. After replacement of rolled copper in tool electrodes with the new composite material the machining rate will increase 4.1 times. The tool electrodes made of this material have significantly lower electrical discharge wear comparing to the wear of tool electrodes made of the prototype material and rolled copper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call