Abstract

The electronic mechanism for the gas-phase 1,3-dipolar cycloaddition of fulminic acid (HCNO) to ethyne is studied through a combination of modern valence-bond theory in its spin-coupled (SC) form and intrinsic reaction coordinate calculations utilizing a complete-active-space self-consistent field wavefunction. It is shown that the concerted reaction follows a “heterolytic” route, during which three orbital pairs corresponding to three distinct bonds in the reactants (an in-plane π bond in ethyne, and a C-N and an N-O in-plane bond in HCNO) shift simultaneously to create the two new bonds closing the isoxazole ring and a nitrogen lone pair. The analysis of the SC wavefunction strongly suggests that the reacting system remains nonaromatic throughout the most important part of the cycloaddition process. This investigation provides the first demonstration of an alternative SC description of a bond rearrangement, achieved through the movement of singlet orbital pairs through space, during which at least one of the orbitals within a pair becomes completely detached from the atomic centre with which it is associated initially and ends up localized about another centre.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.