Abstract

The mariner/Tc1 superfamily of transposable elements is one of the most diverse and widespread Class II transposable elements. Within the larger assemblage, the mariner-like elements (MLEs) and the Tc1-like elements (TLEs) are distinct families differing characteristically in the composition of the "D,D(35)E" cation-binding domain. Based on levels of sequence similarity, the elements in each family can be subdivided further into several smaller subfamilies. MLEs and TLEs both have an extraordinarily wide host range. They are abundant in insect genomes and other invertebrates and are found even in some vertebrate species including, in the case of mariner, humans, in which one element on chromosome 17p has been implicated as a hotspot of recombination. In spite of the extraordinary evolutionary success of the elements, virtually nothing is known about their mode of regulation within genomes. There is abundant evidence that the elements are disseminated to naive host genomes by horizontal transmission, and there is a substantial base of evidence for inference about the subsequent population dynamics. Studies of engineered mariner elements and induced mutations in the transposase have identified two mechanisms that may be operative in mariner regulation. One mechanism is overproduction inhibition, in which excessive wild-type transposase reduces the rate of excision of a target element. A second mechanism is dominant-negative complementation, in which certain mutant transposase proteins antagonize the activity of the wild-type transposase. The latter process may help explain why the vast majority of MLEs in nature undergo "vertical inactivation" by multiple mutations and, eventually, stochastic loss. There is also evidence that mariner/Tc1 elements can be mobilized in hybrid dysgenesis; in particular, certain dysgenic crosses in Drosophila virilis result in mobilization of a TLE designated Paris as well as the mobilization of other unrelated transposable elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.